
fMRIprep Documentation
Release version

Craig A. Moodie, Krzysztof J. Gorgolewski, Oscar Esteban, Ross Blair, Shoshana Berleant

January 13, 2017

Contents

1 About 3

2 Principles 5

3 Acknowledgements 7

4 License information 9

5 Authors 11

6 Contents 13
6.1 Installation . 13
6.2 Usage . 14
6.3 Workflows . 15
6.4 Contributing to FMRIPREP . 20

i

ii

fMRIprep Documentation, Release version

This pipeline is developed by the Poldrack lab at Stanford University for use at the Center for Reproducible Neuro-
science (CRN), as well as for open-source software distribution.

Contents 1

https://poldracklab.stanford.edu/
http://reproducibility.stanford.edu/
http://reproducibility.stanford.edu/

fMRIprep Documentation, Release version

2 Contents

CHAPTER 1

About

fmriprep is a functional magnetic resonance imaging (fMRI) data preprocessing pipeline that is designed to pro-
vide an easily accessible, state-of-the-art interface that is robust to differences in scan acquisition protocols and that
requires minimal user input, while providing easily interpretable and comprehensive error and output reporting. It
performs basic processing steps (coregistration, normalization, unwarping, noise component extraction, segmentation,
skullstripping etc.) providing outputs that make running a variety of group level analyses (task based or resting state
fMRI, graph theory measures, surface or volume, etc.) easy.

Note: fmriprep performs minimal preprocessing. Here we define ‘minimal preprocessing’ as motion correction, field
unwarping, normalization, field bias correction, and brain extraction. See the ds005 workflow for more details.

The fmriprep pipeline primarily utilizes FSL tools, but also utilizes ANTs tools at several stages such as skull stripping
and template registration. This pipeline was designed to provide the best software implementation for each state of
preprocessing, and will be updated as newer and better neuroimaging software become available.

This tool allows you to easily do the following:

• Take fMRI data from raw to full preprocessed form.

• Implement tools from different software packages.

• Achieve optimal data processing quality by using the best tools available.

• Generate preprocessing quality reports, with which the user can easily identify outliers.

• Receive verbose output concerning the stage of preprocessing for each subject, including meaningful errors.

• Automate and parallelize processing steps, which provides a significant speed-up from typical linear, manual
processing.

More information and documentation can be found here:

https://fmriprep.readthedocs.io/

3

https://fmriprep.readthedocs.io/

fMRIprep Documentation, Release version

4 Chapter 1. About

CHAPTER 2

Principles

fmriprep is built around three principles:

1. Robustness - the pipeline adapts the preprocessing steps depending on the input dataset and should provide
results as good as possible independently of scanner make, scanning parameters or presence of additional cor-
rection scans (such as fieldmaps)

2. Ease of use - thanks to dependance on the BIDS standard manual parameter input is reduced to a minimum
allow the pipeline to run in an automatic fashion.

3. “Glass box” philosophy - automation should not mean that one should not visually inspect the results or un-
derstand the methods. Thus fmriprep provides for each subject visual reports detailing the accuracy of the
most importatnt processing steps. This combined with the documentation can help researchers to understand the
process and decide which subjects should be kept for the group level analysis.

5

fMRIprep Documentation, Release version

6 Chapter 2. Principles

CHAPTER 3

Acknowledgements

Please acknowledge this work mentioning explicitly the name of this software (fmriprep) and the version, along with
the link to the GitHub repository (https://github.com/poldracklab/fmriprep).

7

https://github.com/poldracklab/fmriprep

fMRIprep Documentation, Release version

8 Chapter 3. Acknowledgements

CHAPTER 4

License information

We use the 3-clause BSD license; the full license is in the file LICENSE in the fmriprep distribution.

All trademarks referenced herein are property of their respective holders.

Copyright (c) 2015-2016, the fmriprep developers and the CRN. All rights reserved.

9

fMRIprep Documentation, Release version

10 Chapter 4. License information

CHAPTER 5

Authors

This open-source neuroimaging data processing tool is being developed as a part of the MRI image analysis and
reproducibility platform offered by the CRN.

The CRN (Center for Reproducible Neuroscience) developers team:

• Chris F. Gorgolewski

• Craig Moodie

• Ross Blair

• Shoshana Berleant

• Oscar Esteban

• Russell A. Poldrack

Poldrack Lab, Psychology Department, Stanford University.

11

fMRIprep Documentation, Release version

12 Chapter 5. Authors

CHAPTER 6

Contents

6.1 Installation

There are three ways to use fmriprep: in a Docker Container, in a Singularity Container, or in a Manually Prepared
Environment. Using a container method is highly recommended. Once you are ready to run fmriprep, see Usage for
details.

6.1.1 Docker Container

Make sure command-line Docker is installed.

See External Dependencies for more information (e.g., specific versions) on what is included in the fmriprep Docker
image.

Now, assuming you have data, you can run fmriprep. You will need an active internet connection the first time.

$ docker run --rm -v filepath/to/data/dir:/data:ro \
-v filepath/to/output/dir:/out -w /scratch \
poldracklab/fmriprep:latest /data /out/out participant

For example:

$ docker run --rm -v $HOME/fullds005:/data:ro \
-v $HOME/dockerout:/out -w /scratch \
poldracklab/fmriprep:latest /data /out/out participant \
-w /out/work/ --ignore fieldmaps

6.1.2 Singularity Container

For security reasons, many HPCs (e.g., TACC) do not allow Docker containers, but do allow Singularity containers. In
this case, start with a machine (e.g., your personal computer) with Docker installed. Use docker2singularity to create
a singularity image. You will need an active internet connection and some time.

$ docker run -v /var/run/docker.sock:/var/run/docker.sock \
-v D:\host\path\where\to\ouptut\singularity\image:/output \
--privileged -t --rm singularityware/docker2singularity \
poldracklab/fmriprep:latest

Transfer the resulting Singularity image to the HPC, for example, using scp.

13

https://docs.docker.com/engine/installation/
https://github.com/singularityware/singularity
https://github.com/singularityware/docker2singularity

fMRIprep Documentation, Release version

$ scp poldracklab_fmriprep_latest-*.img user@hcpserver.edu:/path/to/downloads

If the data to be preprocessed is also on the HPC, you are ready to run fmriprep.

$ singularity run path/to/singularity/image.img \
--participant_label label path/to/data/dir path/to/output/dir participant

For example:

$ singularity run ~/poldracklab_fmriprep_latest-2016-12-04-5b74ad9a4c4d.img \
--participant_label sub-387 --nthreads 1 -w $WORK/lonestar/work \
--ants-nthreads 16 --skull--strip-ants /work/04168/asdf/lonestar/ \
$WORK/lonestar/output participant

6.1.3 Manually Prepared Environment

Note: This method is not recommended! Make sure you would rather do this than use a Docker Container or a
Singularity Container.

Make sure all of fmriprep’s External Dependencies are installed. These tools must be installed and their binaries
available in the system’s $PATH.

If you have pip installed, install fmriprep

$ pip install fmriprep

If you have your data on hand, you are ready to run fmriprep:

$ fmriprep data/dir output/dir --participant_label sub-num participant

6.1.4 External Dependencies

fmriprep is implemented using nipype, but it requires some other neuroimaging software tools:

• FSL (version 5.0.9)

• ANTs (version 2.1.0.Debian-Ubuntu_X64)

• AFNI (version Debian-16.2.07)

• C3D (version 1.0.0)

6.2 Usage

6.2.1 Execution and the BIDS format

The fmriprep workflow takes as principal input the path of the dataset that is to be processed. The only requirement
to the input dataset is that it has a valid BIDS (Brain Imaging Data Structure) format. This can be easily checked
online using the BIDS Validator.

The exact command to run fmriprep depends on the Installation method. The common parts of the command follow
the BIDS-Apps definition. Example:

14 Chapter 6. Contents

http://nipype.readthedocs.io/en/latest/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://stnava.github.io/ANTs/
https://afni.nimh.nih.gov/
https://sourceforge.net/projects/c3d/
http://bids.neuroimaging.io
http://incf.github.io/bids-validator/
https://github.com/BIDS-Apps

fMRIprep Documentation, Release version

fmriprep data/bids_root/ out/ participant -w work/

Command-Line Arguments

6.2.2 Debugging

Logs and crashfiles are outputted into the <output dir>/logs directory. Information on how to customize and
understand these files can be found on the nipype debugging page.

6.2.3 Support and communication

The documentation of this project is found here: http://fmriprep.readthedocs.org/en/latest/.

If you have a problem or would like to ask a question about how to use fmriprep, please submit a question to
NeuroStars.org with an fmriprep tag. NeuroStars.org is a platform similar to StackOverflow but dedicated to
neuroinformatics.

All previous fmriprep questions are available here: http://neurostars.org/t/fmriprep/

To participate in the fmriprep development-related discussions please use the following mailing list:
http://mail.python.org/mailman/listinfo/neuroimaging Please add [fmriprep] to the subject line when posting on the
mailing list.

All bugs, concerns and enhancement requests for this software can be submitted here:
https://github.com/poldracklab/fmriprep/issues.

6.3 Workflows

6.3.1 Basic workflow (no fieldmaps)

fmriprep‘s basic pipeline is used on datasets for which there are only t1ws and at least one functional (EPI) file, but
no SBRefs or fieldmaps. To force using this pipeline on datasets that do include fieldmaps and SBRefs use the –ignore
fieldmaps flag.

What It Does

High-level view of the basic pipeline:

6.3. Workflows 15

http://nipype.readthedocs.io/en/latest/users/debug.html
http://fmriprep.readthedocs.org/en/latest/
http://neurostars.org
http://neurostars.org/t/fmriprep/
http://mail.python.org/mailman/listinfo/neuroimaging
https://github.com/poldracklab/fmriprep/issues

fMRIprep Documentation, Release version

BIDSDatasource

This node reads the BIDS-formatted t1 data.

t1w_preprocessing

The t1w_preprocessing sub-workflow finds the skull stripping mask and the white matter/gray matter/cerebrospinal
fluid segments and finds a non-linear warp to the MNI space.

Fig. 6.1: Brain extraction (ANTs).

16 Chapter 6. Contents

http://bids.neuroimaging.io

fMRIprep Documentation, Release version

Fig. 6.2: Segmentation (FAST).

Fig. 6.3: Animation showing T1 to MNI normalization (ANTs)

EPI_HMC

The EPI_HMC sub-workflow collects BIDS-formatted EPI files, performs head motion correction, and skullstripping.

Fig. 6.4: Brain extraction (nilearn).

6.3. Workflows 17

http://bids.neuroimaging.io

fMRIprep Documentation, Release version

ref_epi_t1_registration

The ref_epi_t1_registration sub-workflow uses FSL FLIRT with the BBR cost function to find the transform that maps
the EPI space into the T1-space.

Fig. 6.5: Animation showing EPI to T1 registration (FSL FLIRT with BBR)

EPIMNITransformation

The EPIMNITransformation sub-workflow uses the transform from ‘EPIMeanNormalization‘_ and a t1-to-MNI

18 Chapter 6. Contents

fMRIprep Documentation, Release version

transform from t1w_preprocessing to map the EPI image to standardized MNI space. It also maps the t1w-based mask
to MNI space.

Transforms are concatenated and applied all at once, with one interpolation step, so as little information is lost as
possible.

ConfoundDiscoverer

Given a motion-corrected fMRI, a brain mask, MCFLIRT movement parameters and a segmentation, the Confound-
Discoverer sub-workflow calculates potential confounds per volume.

Calculated confounds include the mean global signal, mean tissue class signal, tCompCor, aCompCor, Frawise Dis-
placement, 6 motion parameters and DVARS.

Reports

fmriprep outputs summary reports and reportlets (reports of individual steps in the process). These reports provide
visuals to make visual inspection of the results easy. View a sample report.

Derivatives

There are additional files, called “Derivatives”, outputted to <output dir>/derivatives. See the BIDS spec
for more information.

Derivatives related to t1w files are in the anat subfolder:

• *T1w_brainmask.nii.gz Brain mask derived using ANTS or AFNI, depending on the command flag
--skull-strip-ants

• *T1w_space-MNI152NLin2009cAsym_brainmask.nii.gz Same as above, but in MNI space.

• *T1w_dtissue.nii.gz Tissue class map derived using FAST.

• *T1w_preproc.nii.gz Bias field corrected t1w file, using ANTS’ N4BiasFieldCorrection

• *T1w_space-MNI152NLin2009cAsym_preproc.nii.gz Same as above, but in MNI space

• *T1w_target-meanBOLD_affine.txt The ITK-formatted affine to transform T1w into the EPI space,
created by FSL and converted by C3DAffineTool

6.3. Workflows 19

http://bids.neuroimaging.io

fMRIprep Documentation, Release version

• *T1w_target-MNI152NLin2009cAsym_affine.mat The affine matrix to transform T1w into MNI
space

• *T1w_space-MNI152NLin2009cAsym_class-CSF_probtissue.nii.gz

• *T1w_space-MNI152NLin2009cAsym_class-GM_probtissue.nii.gz

• *T1w_space-MNI152NLin2009cAsym_class-WM_probtissue.nii.gz Probability tissue maps,
transformed into MNI space

• *T1w_target-MNI152NLin2009cAsym_warp.nii.gz Warp transform to transform t1w into MNI
space

Derivatives related to EPI files are in the func subfolder:

• *bold_brainmask.nii.gz Brain mask for EPI files, calculated by BET on the average EPI volume, post-
motion correction

• *bold_space-MNI152NLin2009cAsym_brainmask.nii.gz Same as above, but in MNI space

• *bold_confounds.tsv A tab-separated value file with one column per calculated confound and one row
per timepoint/volume

• *bold_preproc.nii.gz Motion-corrected (using MCFLIRT) EPI file.

• *bold_space-MNI152NLin2009cAsym_preproc.nii.gz Same as above, but in MNI space

• *bold_target-T1w_affine.txt The ITK-formatted affine to transform the EPI into T1w space (the
inverse of anat/*T1w_target-meanBOLD_affine.txt)

Images

The images subfolder of the output directory contains images (e.g., .svg, .png) produced by fmriprep. Each
image is accompanied by a .json file that contains metadata about how the image was produced.

6.4 Contributing to FMRIPREP

This document explains how to prepare a new development environment and update an existing environment, as
necessary.

Development in Docker is encouraged, for the sake of consistency and portability. By default, work should be built
off of poldracklab/fmriprep:latest (see the installation guide for the basic procedure for running).

It will be assumed the developer has a working repository in $HOME/projects/fmriprep, and examples are also
given for niworkflows and NIPYPE.

6.4.1 Patching working repositories

In order to test new code without rebuilding the Docker image, it is possible to mount working repositories as source
directories within the container. In the docker container, the following Python sources are kept in /root/src:

/root/src
-- fmriprep/
-- nipype/
-- niworkflows/

To patch in working repositories, for instance contained in $HOME/projects/, add the following arguments to
your docker command:

20 Chapter 6. Contents

https://hub.docker.com/r/poldracklab/fmriprep/
https://github.com/poldracklab/niworkflows
https://github.com/nipy/nipype

fMRIprep Documentation, Release version

-v $HOME/projects/fmriprep:/root/src/fmriprep:ro
-v $HOME/projects/niworkflows:/root/src/niworkflows:ro
-v $HOME/projects/nipype:/root/src/nipype:ro

For example,

$ docker run --rm -v $HOME/fullds005:/data:ro -v $HOME/dockerout:/out \
-v $HOME/projects/fmriprep:/root/src/fmriprep:ro \
poldracklab/fmriprep:latest /data /out/out participant \
-w /out/work/ -t ds005

In order to work directly in the container, use --entrypoint=bash, and omit the fmriprep arguments:

$ docker run --rm -v $HOME/fullds005:/data:ro -v $HOME/dockerout:/out \
-v $HOME/projects/fmriprep:/root/src/fmriprep:ro --entrypoint=bash \
poldracklab/fmriprep:latest

Preparing repository for patching

In order to patch a working repository into the docker image, its egg-info must be built. The first time this is done,
the repository should be mounted read/write, and be installed in editable mode. For instance, to prepare to patch in
fmriprep, niworkflows and nipype, all located under $HOME/projects,

$ docker run --rm -it --entrypoint=bash \
-v $HOME/projects/fmriprep:/root/src/fmriprep \
-v $HOME/projects/niworkflows:/root/src/niworkflows \
-v $HOME/projects/nipype:/root/src/nipype \
poldracklab/fmriprep:latest

root@03e5df018c5e:~# cd ~/src/fmriprep/
root@03e5df018c5e:~/src/fmriprep# pip install -e .
root@03e5df018c5e:~# cd ~/src/niworkflows/
root@03e5df018c5e:~/src/niworkflows# pip install -e .
root@03e5df018c5e:~# cd ~/src/nipype/
root@03e5df018c5e:~/src/nipype# pip install -e .

6.4.2 Adding dependencies

New dependencies to be inserted into the Docker image will either be Python or non-Python dependencies. Python
dependencies may be added in three places, depending on whether the package is large or non-release versions are
required. The image must be rebuilt after any dependency changes.

Python dependencies should generally be included in the REQUIRES list in fmriprep/info.py. If the latest version in
PyPI is sufficient, then no further action is required.

For large Python dependencies where there will be a benefit to pre-compiled binaries, conda packages may also be
added to the conda install line in the Dockerfile.

Finally, if a specific version of a repository needs to be pinned, edit the requirements.txt file. See the current
file for examples.

Non-Python dependencies must also be installed in the Dockerfile, via a RUN command. For example, installing an
apt package may be done as follows:

RUN apt-get update && \
apt-get install -y <PACKAGE>

6.4. Contributing to FMRIPREP 21

https://github.com/poldracklab/fmriprep/blob/29133e5e9f92aae4b23dd897f9733885a60be311/fmriprep/info.py#L46-L61
https://pypi.org/
https://github.com/conda/conda
https://github.com/poldracklab/fmriprep/blob/29133e5e9f92aae4b23dd897f9733885a60be311/Dockerfile#L46
https://github.com/poldracklab/fmriprep/blob/master/requirements.txt

fMRIprep Documentation, Release version

6.4.3 Rebuilding Docker image

If it is necessary to rebuild the Docker image, a local image named fmriprep may be built from within the working
fmriprep repository, located in ~/projects/fmriprep:

~/projects/fmriprep$ docker build -t fmriprep .

To work in this image, replace poldracklab/fmriprep:latest with fmriprep in any of the above com-
mands.

22 Chapter 6. Contents

	About
	Principles
	Acknowledgements
	License information
	Authors
	Contents
	Installation
	Usage
	Workflows
	Contributing to FMRIPREP

